Finding the Slope of a Line

You are already familiar with the concept of **slope.** When you walk uphill, you walk up a slope. When you walk downhill, you walk down a slope. A graphed line, like a hill, has a slope.

The slope of a line is given as a number. When you move between two points on the line, the slope is found by dividing the change in y values by the corresponding change in x values.

Slope of a line =
$$\frac{\text{Change in } y \text{ value (vertical change)}}{\text{Change in } x \text{ value (horizontal change)}}$$

- · A line that goes up from left to right has a positive slope.
- A line that goes down from left to right has a negative slope.

In Example 1, the slope of the line is 2.

In Example 2, the slope of the line is $-\left(\frac{2}{2}\right) = -1$.

EXAMPLE 1

Slope =
$$\frac{4}{2}$$
 = 2

The line above has a *positive slope* because it goes *up* from left to right.

Slope =
$$-\frac{2}{2}$$
 = -1

The line above has a *negative* slope because it goes down from left to right.

Zero Slope and Undefined Slope

Two types of lines have neither positive nor negative slope.

- A horizontal line has *zero slope*, or the slope equals zero. The *x*-axis (or any horizontal line) is a line with 0 slope.
- A vertical line has an *undefined slope*. The concept of slope does not apply to a vertical line. The *y*-axis (or any vertical line) is a line with undefined slope.

Solve the following problems.

1. Identify the slope of each line as *positive*, *negative*, *zero*, or *undefined*.

Line *A*: _____

Line *B:* _____

Line *C*:_____

Line *D*: _____

3. Find the numerical value of the slope of line *F*. Identify the *x*- and *y*-intercepts.

Slope of line $F = \underline{\hspace{1cm}}$

x-intercept = (,)

y-intercept = (,)

2. Find the numerical value of the slope of line *E*. Identify the *x*- and *y*-intercepts.

Slope of line E =

x-intercept = (,)

y-intercept = (,)

4. Subtract the coordinates to find the slope of the line that passes through each pair of points. Part a is done as an example.

a. (3, 1) and (4, 6)

slope =
$$\frac{change in y}{change in x} = \frac{6-1}{4-3} = \frac{5}{1} = 5$$

b. (0, 2) and (1, 4)

c. (1, 2) and (-2, 5)

d. (0, 0) and (3, 2)