2nd Law of Motion

Force = Mass x Acceleration (F=MA)

- Force is measured in Newtons (N)
- Mass is measured in kilograms (kg)
- Acceleration is measured in meters per second squared (m/s^2)

2nd Law of Motion Force = Mass x Acceleration (F=MA)

- Force is measured in Newtons (N)
- Mass is measured in kilograms (kg)
- Acceleration is measured in meters per second squared (m/s^2)

Practice Problems

Give the equation used for each problem and show all work.

1.	What net force is required to	accelerate a car	at a rate of 2 m/s2 if the	e car has a mass of 3,000 k	g?
----	-------------------------------	------------------	----------------------------	-----------------------------	----

m=____

a=_____

2. A10 kg bowling ball would require what force to accelerate down an alleyway at a rate of 3 m/s2 ?

F=____

- m=____
- a=____

3. Sally has a car that accelerates at 5 m/s2. If the car has a mass of 1000 kg, how much force does the car produce?

F=____

- m=____
- a=____

4. What is the mass of a falling rock if it produces a force of 147 N?

F=____

m=____

a=____

5. What is the mass of a truck if it produces a force of 14,000 N while accelerating at a rate of 5 m/s2 ?

F=____

m=____

a=____