2nd Law of Motion

Force $=$ Mass x Acceleration $(F=M A)$

- Force is measured in Newtons (N)
- Mass is measured in kilograms (kg)
- Acceleration is measured in meters per second squared $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Calculating Distance, Speed, and Time

Distance=

Speed=

2nd Law of Motion

Force $=$ Mass \boldsymbol{x} Acceleration $(F=M A)$

- Force is measured in Newtons (N)
- Mass is measured in kilograms (kg)
- Acceleration is measured in meters per second squared ($\mathrm{m} / \mathrm{s}^{2}$)

Practice Problems

Give the equation used for each problem and show all work.

1. What net force is required to accelerate a car at a rate of $2 \mathrm{~m} / \mathrm{s} 2$ if the car has a mass of $3,000 \mathrm{~kg}$?
$\mathrm{F}=$ \qquad
$\mathrm{m}=$ \qquad
$\mathrm{a}=$ \qquad
2. A10 kg bowling ball would require what force to accelerate down an alleyway at a rate of $3 \mathrm{~m} / \mathrm{s} 2$?
$\mathrm{F}=$ \qquad
$\mathrm{m}=$ \qquad
$a=$ \qquad
3. Sally has a car that accelerates at $5 \mathrm{~m} / \mathrm{s} 2$. If the car has a mass of 1000 kg , how much force does the car produce?
$\mathrm{F}=$ \qquad
$\mathrm{m}=$ \qquad
$a=$ \qquad
4. What is the mass of a falling rock if it produces a force of 147 N ?
$\mathrm{F}=$ \qquad
$\mathrm{m}=$ \qquad
$a=$ \qquad
5. What is the mass of a truck if it produces a force of $14,000 \mathrm{~N}$ while accelerating at a rate of $5 \mathrm{~m} / \mathrm{s} 2$?
$\mathrm{F}=$ \qquad
$\mathrm{m}=$ \qquad
$\mathrm{a}=$ \qquad
